Please use this identifier to cite or link to this item: https://ruomoplus.lib.uom.gr/handle/8000/1737
DC FieldValueLanguage
dc.contributor.authorSiokis, Fotios M.el
dc.date.accessioned2024-09-30T08:48:57Z-
dc.date.available2024-09-30T08:48:57Z-
dc.date.issued2024-09-01-
dc.identifier.urihttps://ruomoplus.lib.uom.gr/handle/8000/1737-
dc.description.abstractCrude oil prices crashed and dropped into negative territory at the onset of the COVID-19 pandemic. This extreme event triggered a series of great-magnitude aftershocks. We seek to investigate the cascading dynamics and the characteristics of the series immediately following the oil market crash. Utilizing a robust method named the Omori law, we quantify the correlations of these events. This research presents empirical regularity concerning the number of times that the absolute value of the percentage change in the oil index exceeds a given threshold value. During the COVID-19 crisis, the West Texas Intermediate (WTI) oil prices exhibit greater volatility compared to the Brent oil prices, with higher relaxation values at all threshold levels. This indicates that larger aftershocks decay more rapidly, and the period of turbulence for the WTI is shorter than that of Brent and the stock market indices. We also demonstrate that the power law’s exponent value increases with the threshold value’s magnitude. By proposing this alternative method of modeling extreme events, we add to the current body of literature, and the findings demonstrate its practical use for decision-making authorities—particularly financial traders who model high-volatility products like derivatives.el
dc.language.isoenel
dc.relation.ispartofMathematicsel
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Διεθνές*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.othercomplex systemsel
dc.subject.otherdynamical scaling behaviorel
dc.subject.otherenergyel
dc.subject.otherfinancial crisesel
dc.subject.otherpower lawel
dc.subject.othersystem modelingel
dc.titleExploring the Dynamic Behavior of Crude Oil Prices in Times of Crisis: Quantifying the Aftershock Sequence of the COVID-19 Pandemicel
dc.typejournal articleel
dc.identifier.doi10.3390/math12172743-
dc.identifier.scopus2-s2.0-85203652733-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85203652733-
dc.description.volume12el
dc.description.issue17el
dc.description.startpage2743el
dc.description.endpage2756el
dc.contributor.departmentDepartment of Balkan, Slavic & Oriental Studiesel
dc.relation.eissn2227-7390el
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypejournal article-
item.cerifentitytypePublications-
crisitem.author.deptUniversity of Macedonia-
crisitem.author.departmentDepartment of Balkan, Slavic & Oriental Studies-
crisitem.author.orcid0000-0001-8517-5552-
crisitem.author.facultySchool of Economic and Regional Studies-
crisitem.journal.journaleissn2227-7390-
Appears in Collections:Articles
Files in This Item:
File Description SizeFormat
mathematics-12-02743.pdf486,19 kBAdobe PDF
View/Open
Show simple item record

Page view(s)

20
checked on Oct 12, 2024

Download(s)

4
checked on Oct 12, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons